

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Core Mathematics 1

Monday

10 JANUARY 2005

Afternoon

1 hour 30 minutes

4721

Additional materials: Answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

You are not allowed to use a calculator in this paper.

This question paper consists of 3 printed pages and 1 blank page.

1	(i) Express 11^{-2} as a fraction.	[1]
---	--------------------------------------	-----

2

(ii) Evaluate
$$100^{\frac{1}{2}}$$
. [2]

(iii) Express
$$\sqrt{50} + \frac{6}{\sqrt{3}}$$
 in the form $a\sqrt{2} + b\sqrt{3}$, where a and b are integers. [3]

- 2 Given that $2x^2 12x + p = q(x r)^2 + 10$ for all values of x, find the constants p, q and r. [4]
- 3 (i) The curve $y = 5\sqrt{x}$ is transformed by a stretch, scale factor $\frac{1}{2}$, parallel to the x-axis. Find the equation of the curve after it has been transformed. [2]
 - (ii) Describe the single transformation which transforms the curve $y = 5\sqrt{x}$ to the curve $y = (5\sqrt{x}) 3$. [2]
- 4 Solve the simultaneous equations

$$x^{2} - 3y + 11 = 0, \qquad 2x - y + 1 = 0.$$
 [5]

[3]

- 5 On separate diagrams,
 - (i) sketch the curve $y = \frac{1}{x}$, [2]

(ii) sketch the curve $y = x(x^2 - 1)$, stating the coordinates of the points where it crosses the x-axis,

- (iii) sketch the curve $y = -\sqrt{x}$. [2]
- 6 (i) Calculate the discriminant of $-2x^2 + 7x + 3$ and hence state the number of real roots of the equation $-2x^2 + 7x + 3 = 0$. [3]
 - (ii) The quadratic equation $2x^2 + (p+1)x + 8 = 0$ has equal roots. Find the possible values of p. [4]
- 7 Find $\frac{dy}{dx}$ in each of the following cases: (i) $y = \frac{1}{2}x^4 - 3x$,
 - (i) $y = \frac{1}{2}x^4 3x$, [2]
 - (ii) $y = (2x^2 + 3)(x + 1),$ [4]
 - (iii) $y = \sqrt[3]{x}$. [3]

- 8 The length of a rectangular children's playground is 10 m more than its width. The width of the playground is x metres.
 - (i) The perimeter of the playground is greater than 64 m. Write down a linear inequality in x. [1]
 - (ii) The area of the playground is less than 299 m². Show that (x 13)(x + 23) < 0. [2]
 - (iii) By solving the inequalities in parts (i) and (ii), determine the set of possible values of x. [5]
- 9 (i) Find the gradient of the curve $y = 2x^2$ at the point where x = 3. [2]
 - (ii) At a point A on the curve $y = 2x^2$, the gradient of the normal is $\frac{1}{8}$. Find the coordinates of A. [3]

Points $P_1(1, y_1)$, $P_2(1.01, y_2)$ and $P_3(1.1, y_3)$ lie on the curve $y = kx^2$. The gradient of the chord P_1P_3 is 6.3 and the gradient of the chord P_1P_2 is 6.03.

(iii) What do these results suggest about the gradient of the tangent to the curve $y = kx^2$ at P_1 ? [1]

[3]

[2]

- (iv) Deduce the value of k.
- 10 The points D, E and F have coordinates (-2, 0), (0, -1) and (2, 3) respectively.
 - (i) Calculate the gradient of *DE*. [1]
 - (ii) Find the equation of the line through F, parallel to DE, giving your answer in the form ax + by + c = 0. [3]
 - (iii) By calculating the gradient of *EF*, show that *DEF* is a right-angled triangle. [2]
 - (iv) Calculate the length of DF.
 - (v) Use the results of parts (iii) and (iv) to show that the circle which passes through D, E and F has equation $x^2 + y^2 3y 4 = 0$. [5]

Mark Scheme

1 (i)	$11^{-2} = \frac{1}{121}$	B1 1	$\frac{1}{121}$ $(\frac{1}{11^2} = B0)$
(ii)	$100^{\frac{3}{2}} = 1000$	M1 A1 2	Square rooting or cubing soi 1000
(iii)	$\sqrt{50} + \frac{6}{\sqrt{3}}$	B1	$5\sqrt{2}$ (allow <u>+</u>)
	$=5\sqrt{2} + \frac{6\sqrt{3}}{3}$	M1	Attempt to rationalise $\frac{6}{\sqrt{3}}$
	$=5\sqrt{2}+2\sqrt{3}$	A1 3	сао
		<u>6</u>	
2	<i>q</i> =2	B1	(allow embedded values)
	<i>r</i> =3	B1	
		M1	$qr^2 + 10 = p$ or other correct method
	<i>p</i> =28	A1√4	
		<u>4</u>	
3(i)	$y = 5\sqrt{2x}$	M1	$\sqrt{2x} \text{ or } \sqrt{\frac{x}{2}} \text{ seen}$
		A1 2	$y = 5\sqrt{2x}$
(ii)	Translation $\begin{pmatrix} 0\\ -3 \end{pmatrix}$	B1	Translation
		B1 2 <u>4</u>	$\begin{pmatrix} 0\\ -3 \end{pmatrix}$ o.e.

4	Either		
	y = 2x + 1 or $y = \frac{x^2 + 11}{3}$	M1	Substitute for x/y or attempt to get an equation in 1 variable only
	$x^2 - 6x + 8 = 0$	A1	Obtain correct 3 term quadratic
	(x-2)(x-4) = 0	M1	Correct method to solve 3 term quadratic
	x = 2 x = 4	A1	or one correct pair of values B1
	y = 5 y = 9	A1	second correct pair of values B1 c.a.o
	OR y-1		
	$x = \frac{y}{2}$		
	$\frac{(y-1)^2}{4} - 3y + 11 = 0$		
	$y^2 - 14y + 45 = 0$		
	(y-5)(y-9) = 0		
	y = 5 y = 9		
	x = 2 x = 4		SRIf solution by graphical methods:setting out to draw a parabola and a lineparabola and a lineM1both correctA1reading off of coordinates at intersection point(s)M1one correct pairA1second correct pairA1
			OR No working shown: one correct pair B1 second correct pair B1 full justification that these are the only solutions B3
		<u>5</u>	

5 (i)		B1		Correct curve in +ve quadrant
		B1	2	in -ve quadrant
(ii)		M1		Positive cubic with clearly seen max and min points
		A1		(-1,0) (0,0) (1,0) Any one point stated or marked on sketch
	(-1,0) (0,0) (1,0)	A1	3	Curve passes through all 3 points and no extras stated or marked on sketch
(iii)		B1		Graph <u>only</u> in bottom right hand quadrant
		B1	2	Correct graph, passing through origin
			<u>7</u>	

6 (i)	$49 - 4 \times -2 \times 3 = 73$	M1	Uses $b^2 - 4ac$
	2 real roots	A1	73
		B1√3	2 real roots (ft from their value)
(ii)	$(p+1)^2 - 64 = 0$ or $2[(x+\frac{p+1}{4})^2 - \frac{(p+1)^2}{16} + 4] = 0$	M1	Attempts $b^2 - 4ac = 0$ (involving p) or attempts to complete square (involving p)
		A1	$(p+1)^2 - 64 = 0$ aef
	<i>p</i> = -9,7	B1	<i>p</i> = -9
		B1 4	p= 7
		<u>7</u>	

Mark Scheme

7 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 - 3$	B1	1 term correct
(ii)	$y = 2x^3 + 2x^2 + 3x + 3$	B1 2 M1	Completely correct (+c is an error, but only penalise once) Attempt to expand brackets
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 4x + 3$	A1	$2x^3 + 2x^2 + 3x + 3$
		A1 A1 4	2 terms correct Completely correct
			SRRecognisable attemptat product ruleM1one part correctA1second part correctA1final simplified answerA1
(iii)	$y = x^{\frac{1}{5}}$	B1	$x^{\frac{1}{5}}$ soi
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5}x^{-\frac{4}{5}}$	B1	$\frac{1}{5}x^c$
		B1 3	$kx^{-\frac{4}{5}}$
0 (1)		<u>9</u>	
8(1)	2[10+x+x] > 64	B1 1	20+4x > 64 o.e.
(ii)	x(x+10) < 299 $x^{2} + 10x - 299 < 0$	B1	x(x+10) < 299
	(x-13)(x+23) < 0	B1 2	Correctly shows $(x-13)(x+23) < 0$ AG
			<u>SR</u> <u>Complete</u> proof worked backward B2
(iii)	x > 11 (x-13)(x+23) < 0	B1√ M2	x > 11 ft from their (i) Correct method to solve (x-13)(x+23) < 0 eg graph
	-23 < <i>x</i> <13	A1	-23 < x < 13 seen in this form or as number line <u>SR</u> if soop with po working B1
			I Seen with no working B1
	∴11< <i>x</i> <13	B1 5	In seen with no working br

Mark Scheme

9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x$	B1		4x
	At x=3 , $\frac{dy}{dx} = 12$	B1	2	12
(ii)	Gradient of tangent = - 8	M1		$\frac{\mathrm{d}y}{\mathrm{d}x} = -8$
	4x = -8 $x = -2$	A1		<i>x</i> =-2
	y = 8	A1	3	<i>y</i> =8
(iii)	Gradient = 6	B1	1	Gradient = or approaches 6
(iv)	$\frac{dy}{dx} = 2kx$ $x = 1$ $\frac{dy}{dx} = 2k$ $k = 3$	M1 M1 A1 √	-3	$\frac{dy}{dx} = 2kx$ $\frac{dy}{dx} = 2k$ $k = 3$ CWO
			<u>9</u>	

10(i)	Gradient DE = $-\frac{1}{2}$	B1	1	$-\frac{1}{2}$ (any working seen
(ii)	$y-3 = -\frac{1}{2}(x-2)$	M1		Correct equation for straight line, any gradient, passing through F
		A1		$y-3 = -\frac{1}{2}(x-2)$ aef
	x + 2y - 8 = 0	A1	3	x+2y-8=0 (this form but can have fractional coefficients e.g. $\frac{1}{2}x + y - 4 = 0$
(iii)	Gradient EF = $\frac{4}{2}$ =2	B1		Correct supporting working
	$-\frac{1}{2} \times 2 = -1$	B1	2	Must be seen Attempt to show that product of their gradients = - 1 o.e.
(iv)	$DF = \sqrt{4^2 + 3^2} = 5$	M1		$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ used
		A1	2	5
(v)	DF is a diameter as angle DEF is a right angle.	B1		Justification that DF is a diameter
	Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$	B1		Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$
	Radius = 2.5	B1		Radius = 2.5
	$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$ $x^{2} + y^{2} - 3y + \frac{9}{4} = \frac{25}{4}$	B1 •		$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$
	$ \begin{array}{r} 4 & 4 \\ x^2 + y^2 - 3y - 4 = 0 \end{array} $	B1	5	$x^{2} + y^{2} - 3y - 4 = 0$ obtained correctly with at least one line of intermediate working. SR For working that only shows $x^{2} + y^{2} - 3y - 4 = 0$ is equation for a circle with centre $(0, 1\frac{1}{2})$ B1 radius 2.5 B1
			<u>13</u>	